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We present  an approximate method for calculating the propagation of a weak spherical  or  
cylindrical  shock wave {with counterpressure  taken into account) into a nov_homogeneous ex- 
ponential a tmosphere .  In the case of a cylindrical  wave with an a rb i t r a ry  orientation of the 
cyl inder  axis the three-dimensional  problem is reduced to a two-dimensional  one upon in- 
troducing the principle of planar sections,  i .e. ,  motions of the gas along the cylinder axis 
are  neglected. By means of a parametr iza t ion  with respec t  to the positional angle the two- 
dimensional problem is reduced to a one-dimensional  one. To solve the one-dimensional  
problem, we use the method of "parallel l ayers" :  the a tmosphere  is partitioned into a num- 
ber  of parallel  layers  of smal l  thickness in each of which the a tmosphere  may be consid- 
ered to be homogeneous, and the passage of the wave through a boundary of the l ayers  may 
be regarded as a passage ac ros s  the boundary separat ing two media. 

The problem of the propagation of s t rong cyl indrical  and spherical  blas t  waves into a nonhomogeneous 
a tmosphere  has been considered repeatedly by many authors [1-5]. However, not infrequently, situations 
a r i se  in practice wherein counterpressure  can no longer be neglected, i.e., the wave cannot be considered 
to be strong. 

A classical  example of a case of this kind was the flight and explosion of the Tunguska meteori te  
[6, 7], which resul ted in the appearance of a quasicyl indrical  ball ist ic wave and a spher ical  blast  wave 
whose joint effect was the continuous uprooting of a fores t  over  an area  of 2000 km 2. The majori ty  of au- 
thors est imate the height of the point of explosion in the range of 5 to 10 km, the energy of the explosion in 
the range of 10 to 40 megatons or  (4 to 10) .1023 ergs .  Under these conditions the blast  wave reaches  the 
surface of the earth considerably weakened so that the excess pressure  Ap/pl < 1. 

The problem so stated is not se l f - s imi la r .  We propose to solve it here by an approximate method, 
one which we shall r e fe r  to as the "method of parallel  l aye r s . "  

We consider  f i rs t  the propagation of a spherical  wave. We denote the height of the point of explosion 
by tt 0, the height of the homogeneous atmosphere  by H*, the angle which the direct ion of propagation of the 
wave front makes with the ver t ical  by 0, and the distance f rom the point of explosion by r2 (Fig. 1). Although 
the problem is, s t r ic t ly  speaking, two-dimensional ,  it may be reduced to a one-dimensional  problem by 
means of a parametr iza t ion  with respec t  to the positional angle 0. As long as the wave may be regarded as 
strong, i.e., as long as P2/Pl ~ 40 [8], we apply one of the solutions for strong waves [1-4]. For the fur ther  
t rea tment  of the problem, we proceed in the following way. 

We partit ion the a tmosphere  into a se r ies  of parallel  layers  of thickness AH. We consider  the at- 
mosphere inside each layer  to be homogeneous, and for the propagation of the wave into it, we apply one of 
the approximate formulas derived for the case of propagation of a weak shock wave into a homogeneous 
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Fig. 1 

a t m o s p h e r e . *  F o r m u l a s  of  th i s  k ind ,  fo r  e x a m p l e ,  w e r e  d e r i v e d  
in  [8]; they  g ive  good a g r e e m e n t  with the e x a c t  r e s u l t s  ob t a ined  
by  n u m e r i c a l l y  i n t e g r a t i n g  the d i f f e r e n t i a l  equa t ions  [9]. 

We now change  o v e r  to d i m e n s i o n l e s s  v a r i a b l e s ,  e x p r e s s -  
ing the d i s t a n c e  f r o m  the po in t  (axis) of the e x p l o s i o n  as  a f r a c -  
t ion of a dynamical length r0 

r o = ( E / P ~ o ) l / L  ~ = r l r  o (1) 

w h e r e  E is the e n e r g y  of  the e x p l o s i o n  (ene rgy  p e r  uni t  length  
in the c a s e  of  the c y l i n d r i c a l  wave) ,  Pl0 i s  the u n d i s t u r b e d  a i r  
p r e s s u r e  a t  the he igh t  of  the e x p l o s i o n ,  and  v = 2 o r  3 fo r  a cy l -  
i n d r i c a l  o r  a s p h e r i c a l  w a v e ,  r e s p e c t i v e l y .  A l s o ,  we l e t  q be 
the r e l a t i v e  e x c e s s  p r e s s u r e  a t  the j ump  

q = (P~ - -  Pl) / P~ (2) 

We assume that in the homogeneous atmosphere there exists between q and } a relationship of the 

form q = q(}), which we consider as known. We consider the passage of the wave through the boundary of 

two layers as a passage through the boundary of two media. In addition, both the pressure P2 at the wave 

front as well as the pressure 131 of the undisturbed gas increase by means of a jump. Denoting by P21 and Pll 

the values of P2 and Pl after the shock wave has passed through the separation boundary and letting h = AH/ 

H*, then for Pll, we obtain 

P i i  = P i e  h (3) 

The p r e s s u r e  a t  the wave f ron t ,  P2I, and  the quan t i ty  ql = (P21- Pll) /Pl l  c o r r e s p o n d i n g  to i t ,  m a y  be o b -  
t a i n e d  by  so lv ing  the p r o b l e m  c o n c e r n i n g  the d e c o m p o s i t i o n  of  an  a r b i t r a r y  d i s c o n t i n u i t y  a r i s i n g  a s  the r e -  
su l t  of a n  i n t e r a c t i o n  of a shock  wave  with  the b o u n d a r y  of s e p a r a t i o n  of  the l a y e r s ,  which  m a y  be r e g a r d e d  
as  a c o n t a c t  d i s c o n t i n u i t y .  This  p r o b l e m  was  s o l v e d  by L.  V. Ovsyann ikov  [10]. B a s e d  on h is  so lu t ion ,  

ql = q + ~ P ( q ) (  e h -  1) (4) 

w h e r e  we have  i n t r o d u c e d  the no ta t ion  

a /p~j k (5) 

F o r  ~(q), L.  V. Ovsyann ikov  ob t a ined  the e x p r e s s i o n  

~(q) = _ 2 ( i  t-~q) V~-T7 [ V l + ( l - ~ ) q  V ~ + q + ( i - ~ ) q ]  

2(l+p.q) VI +(l--p~) q-i-(2 +-p,q) l / t  ~-q 
(6) 

w h e r e  V = (T + 1) /2T"  F o r  q < 1, wi th  an  e r r o r  not  e x c e e d i n g  1%, 

, ( q )  = - - i / 2 [ i  + ( 2 - - ~ ) q ]  (7) 

We i n t r o d u c e  an  e f f ec t i ve  r e l a t i v e  d i s t a n c e  ~ , ,  which  we def ine  a s  tha t  va lue  of  }, a t  which the e x c e s s  
p r e s s u r e  q , ,  in  the c a s e  of  p r o p a g a t i o n  of a s t a n d a r d  shock  wave  into a h o m o g e n e o u s  a t m o s p h e r e  with p r e s -  
s u r e  Pl0 and d e n s i t y  pl0 of the u n d i s t u r b e d  g a s ,  would  be  equa l  to the e x c e s s  p r e s s u r e  q in a r e a l  shock  wave  
p r o p a g a t i n g  into  a nonhomogeneous  exponen t i a l  a t m o s p h e r e  (q ,  = q ( ~ . ) ) ,  w h e r e  the f o r m  of  the funct ion  
q ( ~ , )  i s  the s a m e  a s  the f o r m  of  the func t ion  q(~) in  the s t a n d a r d  wave .  

We d e r i v e  an e x p r e s s i o n  r e l a t i n g  ~ .  and  }. To do th i s ,  we f o r m  the d i f f e r e n c e  (} l -~ )  n, a c c u m u l a t i n g  
as  a r e s u l t  of the n o n h o m o g e n e i t y  of  the  a t m o s p h e r e  wi th  the p a s s a g e  of the wave  th rough  the n-th a t m o s -  
p h e r e  l a y e r  of t h i c k n e s s h .  W e n o t e ,  m o r e o v e r ,  t h a t h < < l ,  a n d t h a t ,  we can  then  put  e h = l + h  

dS,  d~, 
( ~  - - ~ ) ~  = (q - -  q~) ~ = - -  ~ ( q ) t ~  d 7  

(s) 

* No e x a c t  so lu t i ons  have  as  y e t  b e e n  found fo r  th is  c a s e  s i n c e ,  wi th  c o u n t e r p r e s s u r e  t a k e n  into a c c o u n t ,  
the p r o b l e m  b e c o m e s  n o n s e l f - s i m i l a r .  
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We divide both sides of Eq. (8) by h and denote 
the l imit  of the result ing expreasion as h ---0 by f(~ , ) :  

dS,  (9) / (g*) = - ~ (q) d-Z 

The difference },--} is obtained by summing Eq. 
(8) over  the layers ,  with account being taken of Eq. (9). 
Passing to the limit for h - - 0 ,  and recal l ing that 

dr dH (10) d~ . . . .  
ro ro ] cos 01 

we replace the summation by an integration 

i ro,oosO, ! (11) o.5 ~o t.~ 2.o ~* - ~ = H* - -  = ~ / (~*) d~ 

Fig. 2 m ~ 

In Eq. (11) the integration is with respec t  to ~, not with respec t  to ~ . .  To change to the variable ~ . ,  
we differentiate Eq. (11), separate  the var iables ,  and integrate once again. We obtain 

where,  we have introduced the notation 
/ 

~rt 
d~, 

= .  1+~j(~,) 

= (r01cos 01)  / H *  

Equation (12) can also be readily obtained f rom the differenttaI equation derived in [10] 

(12) 

(13) 

d~,=l  + , ( q )  [dq]-t d d--~-~ [d~,J -~- In pt (g) (14) 

since for the exponential a tmosphere  

and the f i rs t  factor  on the r ight side of Eq. (14) is equal to - f ( } . ) .  

In the case of an a rb i t ra r i ly  oriented cylindrical  wave, when the cyl inder  axis is inclined at an angle 
i to the horizontal  plane, the problem becomes,  in fact, a three-dimensional  one. To reduce it to a two- 
dimensional problem, we use, as was done ea r l i e r  [5] in obtaining a solution for a s t rong wave, the law of 
planar sections,  i.e., we consider  the propagation of the wave, generated at the point B on the cylinder axis,  
in the plane P passing through B and perpendicular  to the cylinder axis (Fig. 1). In this plane, the quantity 
A = H* sec i plays the role of an effective unit of height; it is to be substituted in place of H* in all the 
formulas.  Consequently, we have 

= ~-~cor~ silcos011, (15) 

where 01 is the positional angle, reckoned in the plane P f rom its intersect ion with the ver t ical  plane pass-  
ing through the axis of the explosion. By parametr iz ing  with respec t  to the angle 01, we reduce the problem 
to a one-dimensional  one. The meaning and the value of the pa ramete r / ?  are clarif ied below. 

An approximate formula,  express ing the relat ionship q(}) and, in the given case,  q(} . ) ,  was derived 
in [8]; it has the form 

q - -x~- - I  (k = 1,2,3) 
(16) 
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Fig. 4 

where  we have adopted  the notat ion 

Fig. 3 

Xa= V i  q- 2n~,~ [h1~,/2 §  (~,> 2. v=3)  (17) 

= = 2) 7 ~ ,  % = 0.85 m 4 " e l ( ~ + l ) , n  ( ~ +  ~ =01983, aa 

The i nve r se  r e l a t ion  4 ,  (q) for  k = I and 2, may  be e x p r e s s e d  in the exp l ic i t  f o r m  

(k = ~.) 

g. = (2n~)_,/~ I~_(_~_ _+_m',n 2)11/~ (k=2) (18) 

F o r  k = 3 (4,  > 2, u = 3) this r e l a t i o n  is t r anscenden t a l ;  ~ ,  can  then be obta ined by the method  of  
s u c c e s s i v e  app rox i m a t i ons .  

On the bas i s  of  Eqs .  (9), (16}, and (17), we obtain  the fol lowing e x p r e s s i o n s  for  the funct ions f ( 4 , )  in 
al l  t h ree  c a s e s :  

2~p (q) o_~ x (x  - -  / l ( ~ , ) = ~ ,  i ~ l  i) 2 

4~(q) ~-V2x /x _ 1) 2 (19) 

r (q) ~ ~1 r. xa (x~ -- l) 2 L,o 5++] 
The f o r m  of the funct ions fk(~ , )  shows that  the in t eg ra l  (12) cannot  be e x p r e s s e d  in t e r m s  of e l e m e n -  

t a r y  funct ions but  m u s t  be eva lua ted  numer ica l lyo  With the a id  of  this i n t eg ra l ,  we can  d e t e r m i n e ,  f o r  an  
a r b i t r a r y  combina t ion  of  T, u, and/~, the ~ c o r r e s p o n d i n g  to a g iven 4 . ,  and then, a a e r  e x p r e s s i n g  the de-  
pendence ~ (4.)  g r aph i ca l l y ,  we can use it to p e r f o r m  the inve r se  p r o c e s s .  Knowing 4 . ,  we can apply a t  the 
point in question the ~tpproximate formulas derived for a shock wave propagating in a homogeneous atmos- 
phere with eounterpressure taken into account [8, 11], or we can use the corresponding tables given in 
[12, 13], and so obtain all the characteristics of the shock wave, and the gas behind the shock wave. 

The parameter ~ is a measure of the influence of atmospheric nonhomogeneity on the propagation of 
the shock wave; we speak of it, therefore, as the nonhomogeneity parameter. Indeed, when ~ = 0, it follows 
from Eqs. (11) and (12) that f .  = ~, i.e., we have the case of a homogeneous atmosphere. The relationship 
of 4 with ~, for various values of/3, for spherical and cylindrical waves, respectively, is shown in Fig. 2 
and Fig. 3 (for 4. -< 2). Since ~. is a single-valued function of q, we have displayed the q values on thd 
upper scale in Figs. 2 and 3. The dependence of q on 4, for spherical (curve 1) and cylindrical (curve 2) 
waves  fo r  l a rge  ~, and sma l l  q is shown in Fig.  4. 
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The dimensionless shock wave propagation velocity v for 4, -< 2 may be determined f rom the expres-  
sion 

D ~.~/2 (20) 
v ----- --~ = V~ (1 + x~) 

where D is the dimensional velocity,  c is the sound speed, and xl 
4, -< 2; for 4, > 2, we have in place of it the following: 

for  a spher ical  wave: 

= ~/i + n ~ ,  v. 

v = (2n)-'/'~: 1 [In~, I2 .+ l ] - ' l '  (1 -k x3) 

Equation (20) is valid for 

(21) 

for a cyl indrical  wave: 

v = (n V~)  '/'~:'/' (I + x~) (22) 

The dimensionless time of passage of the wave is given by 

where T 0 and 40 are related by the equation 

%---- ~(~+2)/2a'/, 

The transi t ion f rom v to the dimensional time t is effected through use of the formula 

(23) 

(24) 

The method presented here makes it possible to est imate quickly the excess p ressu re  at the front of 
a weak spherical  or  cyl indrical  shock wave propagating f rom the top downwards in a nonhomogeneous ex- 
ponential i sothermal  a tmosphere  of small  height; an est imate  of the propagation speed can also be made. 
A nonisothermal a tmosphere  can be readi ly accommodated by express ing the altitude scale for H* as a 
function of the altitude itself.  

The author  thanks L. V. Ovsyanaikov, V. P. Korobeinikov, L. A. Chudov, and Kh. S. Kesteaboim for a 
valuable discussion of the problem. 
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